ntroduction 0000	Distance Metrics for Clustering Matrices 0000	Simulation 0000000	

Clustering Matrices: A Metric Learning Approach to Disease Subtyping in Mental Health

Hanchao Zhang

Division of Biostatistics, Department of Population Health, Grossman School of Medicine, New York University

March 21, 2023

Introduction 0000	Distance Metrics for Clustering Matrices 0000	Simulation 0000000	

Acknowledgements

Collaborators

This talk presents joint work with the following:

- Thaddeus Tarpey (Grossman School of Medicine, NYU)
- Emily R. Stern (Grossman School of Medicine, NYU)
- Alessandro S. De Nadai (Harvard Medical School)

Fundings

This work is supported by NIMH grants:

- R01 MH099003
- R01 MH126981
- R01 MH111794
- R01 MH111794
- R61/R33 MH107589

Image: A math the second se

ntroduction 000	Distance Metrics for Clustering Matrices	Simulation 0000000	

Outline for section 1

Introduction

Distance Metrics for Clustering Matrices

Models for Clustering Matrices
 Unconstrained Common Principal Components
 Partial Common Principal Components

Simulation

Discussion

< 口 > < 同 >

- E

ntroduction 0●00	Distance Metrics for Clustering Matrices 0000	Simulation 0000000	

Functional Connectivity Matrix

Functional Connectivity

Functional connectivity is defined as the temporal coincidence of spatially distant neurophysiological events.

Functional Connectivity (Gillebert and Mantini, 2013)

Functional Connectivity Matrix

For each participant *i*, let $\mathbf{y}_{ij} \in \mathbb{R}^T$ be the longitudinal measurement of blood oxygen level-dependent (BOLD) signal on the region of interest *j*, j = 1, 2, ..., p.

The functional connectivity matrix for participant *i*: $\Sigma_i = Cov(y_i) \succeq 0$

< □ > < 同 > < 回 > < Ξ > < Ξ

Introduction ○○●○	Distance Metrics for Clustering Matrices 0000		Simulation 0000000		
----------------------	--	--	-----------------------	--	--

Self-Consistency Clustering Algorithms

Scalar Outcomes

K-Means algorithm (Steinhaus et al., 1956) minimize $\underbrace{\frac{1}{n}\sum_{i=1}^{m}\sum_{k\in\mathcal{C}_{i}}\|x_{k}-\bar{x}_{\mathcal{C}_{i}}\|^{2}}_{\text{within cluster sum of squares}} \quad OR \quad \underset{\mathcal{C}}{\text{maximize}} \underbrace{\sum_{i=m}\frac{n_{\mathcal{C}_{i}}}{n} \cdot \|\bar{x}_{\mathcal{C}_{i}}\|^{2}}_{\text{between cluster sum of squares}}$

Functional Outcomes

Clustering Functional data (Tarpey and Kinateder, 2003) $\mathbf{y}_i(t), i = 1, ..., n, t \in T$, typically a compact real interval, $y_i(t) =$ function $\mathbf{y}_i(t) = \mathbf{b}'(t) \ \beta_i + \epsilon_i(t) = \sum_{j=1}^{\infty} \beta_{ij} b_j(t) + \epsilon_i(t).$ $\mathbf{b} = (b_1(t), ..., b_p(t), ...)'$ is basis functions $\mathbf{\beta}_i = (\beta_{1i}, ..., \beta_{ip}, ...)'$ is a vector of basis coefficients Perform K-Means or other algorithms on basis coefficients β_i

• • • • • • • • • • • •

Introduction 0000	Distance Metrics for Clustering Matrices 0000		Simulation 0000000		
----------------------	--	--	-----------------------	--	--

Positive Semi-Definite Matrix Outcomes

Consider that for each observation i, i = 1, 2, ..., n, we observe p functional outcomes $y_{ij}(t)$ with mean 0, j = 1, 2, ..., p. Then we can obtain a positive semi-definite matrix for subject i:

$$\mathbf{\Psi}_i = \int_{\mathcal{T}} \mathbf{y}_i(t)^{\mathcal{T}} \mathbf{y}_i(t) \ dt, \mathbf{\Psi}_i \succcurlyeq \mathbf{0},$$

where $\Psi_i \geq 0$ means Ψ_i is positive semi-definite matrix. (All the eigenvalues of Ψ_i are larger and equal to 0).

Clustering Algorithm Approaches

- cluster subjects by Ψ_i 's, i = 1, 2, ..., n
- ▶ vectorize Ψ_i's and treat it as vector
- consider some distance metrics for matrix similarity
- consider the probability distribution (e.g., Wishart distribution)

イロト イヨト イヨト イヨ

luction Dist O ●O	ance Metrics for Clustering Matrices 00	Simulation 0000000	

Outline for section 2

Distance Metrics for Clustering Matrices

Models for Clustering Matrices
 Unconstrained Common Principal Components
 Partial Common Principal Components

Simulation

Discussion

Image: A math a math

Introduction 0000	Distance Metrics for Clustering Matrices ○●○○	Simulation 0000000	

Distance Metrics for Matrices

Euclidean Distance (chapter 2 Minh and Murino, 2017)

let Ψ_1 and $\Psi_2 \in \mathbb{R}^{2 \times 2}$ be two positive semi-definite matrices. The Euclidean distance between two matrices $d_E(\Psi_1, \Psi_2)$ can be represented by points in \mathbb{R}^3

$$d_{oldsymbol{E}}(\Psi_1,\Psi_2) = \|\Psi_1-\Psi_2\|_F^2 = \| ext{vec}(\Psi_1^{ op})- ext{vec}(\Psi_2^{ op})\|^2$$

the vectorized matrices $\langle \Box \rangle \rangle \langle \overline{\Box} \rangle \rangle \langle \overline{\Box} \rangle \rangle \langle \overline{\Xi} \rangle \rangle \langle \overline{\Xi} \rangle \rangle$

troduction 000	Distance Metrics for Clustering Matrices 00●0	Simulation 0000000	
	00●0		

Distance Metrics for Matrices

the vectorized matrices

Disadvantage of Euclidean Distance

matrices with similar shapes are clustered into different groups

Simulation 0000000

イロン イヨン イヨン イ

Discussion

References

Distance Metrics for Matrices (chapter 2 Malhi et al., 2017)

Other Metrics

Affine-invariant Riemannian Distance

$$d_{aiE}(\mathbf{A},\mathbf{B}) = ||\log(\mathbf{A}^{-\frac{1}{2}}\mathbf{B}\mathbf{A}^{-\frac{1}{2}})||_F$$

Log-Determinant Divergences

$$d^1_{\log \det}(\mathbf{A},\mathbf{B}) = tr(\mathbf{B}^{-1}\mathbf{A} - \mathbf{I}) - \log \det(\mathbf{B}^{-1}\mathbf{A})$$

Symmetric Stein Divergence

$$d_{\mathsf{stein}}^2(\mathbf{A},\mathbf{B}) = \mathsf{log}\,\mathsf{det}(\frac{\mathbf{A}+\mathbf{B}}{2}) - \frac{1}{2}\,\mathsf{log}\,\mathsf{det}(\mathbf{AB})$$

Disadvantages

does not consider the structure (shape) of p.s.d matrices

Models for Clustering Matrices

Simulation 0000000

Image: A math a math

Discussion

References

Outline for section 3

Distance Metrics for Clustering Matrices

Models for Clustering Matrices

- Unconstrained Common Principal Components
- Partial Common Principal Components

Simulation

5 Discussion

Simulation 0000000 Discussion O References

Common Principal Components (CPC) (Flury, 1984)

Definition

Let Ψ_1, \ldots, Ψ_n be positive definite symmetric matrix of dimension $p \times p$, we wish to find a orthonormal matrix B which makes the Ψ_i 's simultaneously "as diagonal as possible":

Objective Function

Let F_i be the transformed Ψ_i by B:

$$F_i = B^T \Psi_i B$$

To make sure that F_i 's, i = 1, ..., n are as diagonal as possible, we wish to minimize:

$$\begin{array}{ll} \underset{B}{\text{minimize}} & \prod_{i=1}^{n} \left\{ \frac{\det\left(\text{diag}(\textbf{\textit{F}}_{i})\right)}{\det\left(\textbf{\textit{F}}_{i}\right)} \right\} = \prod_{i=1}^{n} \left\{ \frac{\det\left(\text{diag}(\textbf{\textit{B}}^{T}\Psi_{i}\textbf{\textit{B}})\right)}{\det\left(\textbf{\textit{B}}^{T}\Psi_{i}\textbf{\textit{B}}\right)} \right\}, \\ \text{where } \det(F_{i}) \leq \det(\text{diag}(F_{i})). \end{array}$$

Algorithms

- ► FG-algorithm (Flury and Constantine, 1985)
- MM algorithms (Browne and McNicholas, 2014)
- R algorithm (Hallin et al., 2014)

Distance Metrics for Clustering Matrices	Models for Clustering Matrices		
	õoo		

Unconstrained Common Principal Components for Clustering Matrices

Stiefel Manifold

the Stiefel manifold $V_k(\mathbb{R}^p)$ is the set of all orthonormal k-frames in \mathbb{R}^p

$$V_k(\mathbb{R}^p) = \{ oldsymbol{A} \in \mathbb{R}^{n imes p} : oldsymbol{A}^T oldsymbol{A} = oldsymbol{I}_p \}$$

Self-Consistency Algorithm Based on CPC

Let $S \subset \mathbb{R}^{p \times p}$, $S \succeq 0$ denote a set of p.s.d. matrices. For each $B \in V_p(\mathbb{R}^p)$, define:

$$D_{B}(S) = \{ \Psi \in \mathbb{R}^{p \times p}, \Psi \succeq 0 : \| \Psi - \underbrace{B \operatorname{diag}(F_{B}) B^{T}}_{\hat{\Psi}} \|_{F} \leq \| \Psi - A \operatorname{diag}(F_{A}) A^{T}\|_{F}, \\ B \neq A, A \in V_{p}(\mathbb{R}^{p}) \}.$$

Therefore, each matrix in set $D_B(S)$ shares common principal components B that can make them "as diagonal as possible".

Note

Since we have $\Psi = BF_BB^T = AF_AA^T$, we can redefine $D_B(S)$ as follow:

$$D_{\boldsymbol{B}}(S) = ig\{ \Psi \in \mathbb{R}^{p imes p}, \Psi \succeq \mathsf{0} : \| \boldsymbol{F}_B - \mathsf{diag}(\boldsymbol{F_B}) \|_F \ \leq \| \boldsymbol{F_A} - \mathsf{diag}(\boldsymbol{F_A}) \|_F,$$

$$\boldsymbol{B} \neq \boldsymbol{A}, \boldsymbol{A} \in V_{p}(\mathbb{R}^{p}) \}.$$

Models for Clustering Matrices $\bigcirc^{\circ}_{\circ}_{\circ}_{\circ}_{\circ}_{\circ}_{\circ}$

Simulation 0000000 Discussion

References

Unconstrained Common Principal Components for Clustering Matrices

Self-Consistency Algorithm Based on CPC

Let $S \in \mathbb{R}^{p \times p}, S \succeq 0$ denote a measurable set. For each $B \in V_p(\mathbb{R}^p)$, define:

$$D_{\boldsymbol{B}}(\boldsymbol{S}) = \big\{ \boldsymbol{\Psi} \in \mathbb{R}^{p \times p}, \boldsymbol{\Psi} \succeq \boldsymbol{0} : \| \boldsymbol{\Psi} - \boldsymbol{B} \operatorname{diag}(\boldsymbol{F}_{\boldsymbol{B}}) \ \boldsymbol{B}^{\mathsf{T}} \|_{\mathsf{F}} \le \| \boldsymbol{\Psi} - \boldsymbol{A} \operatorname{diag}(\boldsymbol{F}_{\boldsymbol{A}}) \ \boldsymbol{A}^{\mathsf{T}} \|_{\mathsf{F}}, \\ \boldsymbol{B} \neq \boldsymbol{A}, \boldsymbol{A} \in V_{p}(\mathbb{R}^{p}) \big\}.$$

Unconstrained CPC for Matrices Clustering

Algorithm Clustering Matrices Using Unconstrained CPC

Start with an initial partition of all matrices into K clusters

- 1: for each cluster k, k = 1, 2, ..., K, estimate the common principal component B_k .
- 2: assign individual matrices Ψ_i to cluster k if

$$k^* = \underset{k=1,...,K}{\arg\min} \| \boldsymbol{\Psi}_i - \boldsymbol{B}_k \operatorname{diag}(\boldsymbol{F}_{\boldsymbol{B}_k}) \boldsymbol{B}_k^T \|_F$$

repeat steps 1 and 2 until convergence.

イロト イヨト イヨト イヨ

Introduction 0000	Distance Metrics for Clustering Matrices 0000	Models for Clustering Matrices ○○○○ ●	Simulation 0000000	

Partial Common Principal Components

Self-Consistency Algorithm Based on Partial CPC

Let
$$S \in \mathbb{R}^{p \times p}, S \succeq 0$$
 denote a measurable set. For each $B := (\beta_1, \dots, \beta_m) \in V_m(\mathbb{R}^p)$,
 $D_B(S) = \{ \Psi \in \mathbb{R}^{p \times p}, \Psi \succeq 0 : \| \Psi - \sum_{r=1}^m f_{B_r} \beta_r \beta_r^T \|_F \le \| \Psi - f_{A_r} \alpha_r \alpha_r^T \|_F,$
 $B \neq A, A \in V_m(\mathbb{R}^p) \},$

where f_1, \ldots, f_p are the the diagonal elements of **F**, and $m \leq p$.

Unconstrained CPC for Matrices Clustering

Algorithm Clustering Matrices Using Unconstrained CPC

Start with an initial partition of all matrices into K clusters

1: for each cluster k, k = 1, 2, ..., K, estimate the common principal component B_k .

2: assign individual matrices Ψ_i to cluster k if $k^* = \underset{k=1,...,K}{\arg \min} \|\Psi_i - \sum_{r=1}^m f_{\mathcal{B}_{k_r}} \beta_r \beta_r^T\|_F$ repeat steps 1 and 2 until convergence.

Models for Clustering Matrices

Simulation

< □ > < 同 > < Ξ > <</p>

Discussion

References

Outline for section 4

Models for Clustering Matrices
 Unconstrained Common Principal Components
 Partial Common Principal Components

Simulation

Discussion

Introduction 0000	Distance Metrics for Clustering Matrices 0000	Simulation ○●○○○○○○	

Simulation

Simulation Settings

let B_1 and B_2 be the two common eigenvectors for the two clusters

$$\boldsymbol{B}_1 = \begin{pmatrix} \cos(\beta_1) & -\sin(\beta_1) \\ \sin(\beta_1) & \cos(\beta_1) \end{pmatrix} \qquad \boldsymbol{B}_2 = \begin{pmatrix} \cos(\beta_2) & -\sin(\beta_2) \\ \sin(\beta_2) & \cos(\beta_2) \end{pmatrix},$$

where β_1 and β_2 be 2 scalars from 0 to 2π . Let $|\beta_1 - \beta_2| = \theta$ be the differences between two eigenvectors.

let $\lambda_{B_1i} = [\lambda_{B_1i1}, \lambda_{B_1i2}]$ and $\lambda_{B_2i} = [\lambda_{B_2i1}, \lambda_{B_2i2}]$ be the eigenvalues for the two clusters. Denote $\Lambda_{B_1i} = \text{diag}(\lambda_{B_1i})$, and $\Lambda_{B_2i} = \text{diag}(\lambda_{B_2i})$, where $\lambda \sim \chi^2(df)$.

Then we can obtain our simulated matrices:

$$\Psi_{1i} = \boldsymbol{B}_1 \boldsymbol{\Lambda}_{\boldsymbol{B}_1 i} \boldsymbol{B}_1^T + \boldsymbol{E}_1 \qquad \Psi_{2i} = \boldsymbol{B}_2 \boldsymbol{\Lambda}_{\boldsymbol{B}_2 i} \boldsymbol{B}_2^T + \boldsymbol{E}_2,$$

where E_1 , and E_1 are random error with mean 0.

Note

- $\blacktriangleright \ \theta$ denotes how close the two clusters of matrices are
- E is some random perturbation on eigenvector and eigenvalues.

Models for Clustering Matrice

Simulation

Discussion

References

Simulations

$\theta = \pi/5, df = 5$

Simulation

$$\bullet \ \theta = \pi/5$$

• eigenvalues
$$\sim \chi^2(5)$$

Classification Error

- ▶ CPCA = 0
- ► rCPCA = 0
- Euclidean Distance = 0.28
- Affine Invariance Divergence = 0.34
- Log-Determinant Divergence = 0.38

< ロ > < 回 > < 回 > < 回 > < 回 >

000	oc	

Distance Metrics for Clustering Matrices 0000 Models for Clustering Matrices

Simulation

Discussion

References

Simulations

 $\theta = \pi/5, df = 5$

Simulation

$$\blacktriangleright$$
 $\theta = \pi/15$

eigenvalues ~
$$\chi^2(40)$$

Classification Error

- ► CPCA = 0
- ▶ rCPCA = 0.02
- Euclidean Distance = 0.4
- Affine Invariance Divergence = 0.4
- Log-Determinant Divergence = 0.44

< ロ > < 回 > < 回 > < 回 > < 回 >

000	oc	

Distance Metrics for Clustering Matrices 0000 Models for Clustering Matrices

Simulation

Discussion

References

Simulations

 $\theta = \pi/5, df = 5$

Simulation

- $\bullet \ \theta = \pi/15$
- eigenvalues $\sim \chi^2(20)$
- noise = 5%

Classification Error

- CPCA = 0.02
- ▶ rCPCA = 0.02
- Euclidean Distance = 0.4
- Affine Invariance Divergence = 0.4
- Log-Determinant Divergence = 0.44

< ロ > < 回 > < 回 > < 回 > < 回 >

Distance Metrics for Clustering Matrices 0000 Models for Clustering Matrices

Simulation

Discussion

References

Simulations

 $\theta\,=\,\pi\,/\,5,\,df\,=\,5$

 $\theta = \pi / 15, df = 5$

 $\theta = \pi / 15, df = 20, noise = 2\%$

 $\theta\,=\,\pi\,/\,6,\,df\,=\,5$

 $\theta = \pi/15, df = 20$

 $\theta = \pi / 15, df = 20, noise = 4\%$

 $\theta = \pi/8, df = 5$

 $\theta = \pi / 15, df = 40$

 $\theta = \pi / 15, df =$

20, noise = 6%

 $\theta\,=\,\pi\,/10,\,df\,=\,5$

 $\theta = \pi / 15, df = 20, noise = 1\%$

oduction 00	Distance Metrics for Clustering Matrices	Simula 0000

imulation

Discussion O References

Simulations

Simulation Results

Classification Errors					
Methods	$\theta = \pi/5$	$\theta = \pi/6$	$\theta = \pi/8$	$ heta~=~\pi/10$	$\theta = \pi/15$
	df = 5				
CPCA	0.00	0.00	0.00	0.00	0.00
rCPCA	0.00	0.00	0.02	0.00	0.02
Frobenius	0.28	0.32	0.32	0.34	0.34
Aff. Div.	0.34	0.38	0.42	0.42	0.44
Log-Det	0.38	0.38	0.44	0.44	0.46
Methods	$\theta = \pi/15$				
	df = 20	df = 40	df = 20	df = 20	df = 20
			noise = 0.01	noise = 0.06	noise = 0.10
CPCA	0.00	0.00	0.02	0.10	0.18
rCPCA	0.10	0.12	0.02	0.14	0.20
Frobenius	0.40	0.40	0.40	0.36	0.50
Frobenius Aff. Div.	0.40 0.40	0.40	0.40	0.36 0.40	0.50 0.46

Distance Metrics for Clustering Matrices	Models for Clustering Matrices	
	800	

Outline for section 5

• Unconstrained Common Principal Components • Partial Common Principal Components

Discussion

Image: A math a math

Discussion

Introduction 0000	Distance Metrics for Clustering Matrices	Simulation 0000000	References
Referenes			

- R. P. Browne and P. D. McNicholas. Estimating common principal components in high dimensions. *Advances in Data Analysis and Classification*, 8:217–226, 2014.
- B. N. Flury. Common principal components in k groups. *Journal of the American Statistical Association*, 79(388):892–898, 1984.
- B. N. Flury and G. Constantine. Algorithm as 211: The fg diagonalization algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 34(2):177–183, 1985.
- C. R. Gillebert and D. Mantini. Functional connectivity in the normal and injured brain. *The Neuroscientist*, 19(5):509–522, 2013.
- M. Hallin, D. Paindaveine, and T. Verdebout. Efficient r-estimation of principal and common principal components. *Journal of the American Statistical Association*, 109 (507):1071–1083, 2014.
- G. S. Malhi, Y. Byrow, T. Outhred, and K. Fritz. Exclusion of overlapping symptoms in dsm-5 mixed features specifier: heuristic diagnostic and treatment implications. CNS spectrums, 22(2):126–133, 2017.
- H. Q. Minh and V. Murino. Covariances in computer vision and machine learning. *Synthesis Lectures on Computer Vision*, 7(4):1–170, 2017.
- H. Steinhaus et al. Sur la division des corps matériels en parties. *Bull. Acad. Polon. Sci*, 1 (804):801, 1956.
- T. Tarpey and K. K. Kinateder. Clustering functional data. *Journal of classification*, 20 (1), 2003.